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where X is defined most often as the volume fraction transformed versus the total available
volume fraction. Very often one is interested in the evolution of o with time. A prerequisite for
establishing the relationship given in (1) is that the relationship

X=X (2)

is known with acceptable accuracy. If this is not the case the effort becomes rather qualitative.
Thus an essential step in establishing relationship (1) is to establish relationship (2). Most work
has been done on the isothermal transformations. However, the non-isothermal transformations
are in industrial respect frequently of equal importance, thus:

dT
= —_— 3
X X(r, r ) (3)

Also, great efforts have been made to convert the rather extensive information collected during
the years related to the isothermal transformations to the non-isothermal case. The approach
sketched above has long traditions within the field of heat treatment of steels (for example (2)).

Very many of the phase transformations of industrial importance are nucleation and growth trans-
formations. When the transformation occurs by a completely random nucleation of the new phase
with a nucleation rate N and by hard impingement of the growing crystals, equation (2) can be
written in the following way:

dX=(1- X)dX'

- . ’ )
x*=err,T) jcu,n dt-dr
0 T

For this particular case equation (4) is an exactly correct expression of equation (2). In the case
of soft impingement of growing precipitates this is not the case and several approximate expres-
sions have been suggested, (3). These approximations have been compared with each other, but
how well they describe the experimental results are difficult to judge because they contain several
adjustable parameters.

The most commonly used expression for equation (4) even for these transformations is:

v(t) ty"
= a- - 5
X 1 exp[ (TJ ] (5

max

Here v(1) is the volume of the precipitates formed after an ageing time t, and V,,,, is the maximum
volume of precipitates that can form at the temperature used. When site saturation occurs n = 34
and n = % when the nucleation rate is constant with time. When the nucleation rate is increasing
with time n> % while n< % when the nucleation rate is decreasing with time. T is a scaling time,
the magnitude of which depends on the diffusion coefficient, the nucleation rate or the nucleation
site density. The kinetics of the transformation is sensitive to the magnitude of n. One finds for
Iy 99 »the time taken before 99% of the transformation is completed:
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digg _ i 99]“]“( ’OO) (6)
n

dn

Thus if an n-value of 1.4 or 1.3 is used instead of 1.5, 1,4, is increased by approximately 8% ot
17%, respectively. Thus, for a simulation of such transformations to be reliable the value of h

needs to be as reliable as possible.

A rigorous treatment of the soft impingement transformation requires the solution of a very
complicated diffusion problem. In order to obtain reliable results, numerical methods have to be
used. In the present study a computer modelling of the growth of precipitates in a supersaturated
solution has been carried out and the results have been compared with some approximate

solutions.

Computer Simulations

The results presented in the present paper are all related to isothermal, diffusional transformations
with soft impingement. The non-isothermal case will be published elsewhere (4).

The growth of spherical Mg,Si- particles in a unit volume of a quasibinary AlMgSi-alloy was
simulated under various nucleation conditions of the particles. In the first run all the particles
were assumed to be nucleated at + = 0. The N nucleation sites (107/mm?3) were distributed at
random within the unit volume. The unit volume was then subdivided into N Vorronoi-cells, each
such cell associated with one particle. The size distribution, f{(v) of the Vorronoi-cells can not be
calculated analytically, but there exist several numerical calculations of this distribution (5). This
distribution can be expressed in an approximate way by the following mathematical expression
(6):

k
Fovy = N exp(-ku) (7

I'(k)

Here k was found by the numerical calculation to be 6,18 + 0,11 but the exact value was believed
to be 6. In the present simulation k = 6 is used. I" is the gamma-function. In technological alloys
the nucleation sites are not always randomly distributed within the material. In such cases the size
distribution of the Vorronoi-cells will not be given by equation (7). In the second run this condi-
tion was simulated by retaining the site saturation condition but using a log normal cell distribu-
tion instead of the distribution given by equation (7):

(8)

FR) 1 (InR-InR,)*
= exp| -
Rin cgJZE P 2Inao,)

where R is the radius of the cell, R, is the geometric mean and 0, is the geometric standard de-
viation of the distribution. In the lhzrd run the particles were assumed to nucleate at a constant
frequency N (1/unit volume - unit time). In order to handle this case, some additional simplifica-
tions have to be introduced: At t=0, a number N, = N ATV, was nucleated in the total volume

where Nd:s the effective nucleation frequency and At is the effective nucleation time. The
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effective nucleation frequency is related to the nucleation frequency simply by: N,f = NAQ’AT '
The total volume was divided into N, sub-volumes of equal sizes vy(0) = (V/N,) and of spherical
shape with a particle in its centre. These particles were allowed to grow for a period of time At.
At this time, N, new particles were nucleated. These particles were allowed to nucleate only in
that part of the total volume where the supersaturation was approximately unaffected by the
growing particles. The reason for this restriction is that the nucleation rate is very sensitive to the
degree of supersaturation (3). In the results presented here a reduction of 10% of the initial
supersaturation was allowed without effecting the nucleation rate. For a lager reduction the
nucleation rate was put equal to zero. Thus N, = N,ﬂmv, particles were formed where V, is the
volume where the supersaturation is lager than 90% of the initial supersaturation. The volume V,
was now distributed equally between all particles. Thus, the size of the cells associated with the
particles nucleated at t=At is v, (Ar) =V, /(N, + N,) while the size of the cells associated with the
particles formed at £ = 0 will be vy (Ar)=(V, = V;)/ Ny + Y /(Ny + N;). All the particles were now

allowed to grow for a time At and the same procedure was then repeated until the supersaturation
was reduced to below 90% in the total volume of the material, after which the remaining part of
the transformation occurs by growth only of the particles.

Quite often the growth of particles in ternary alloys is approximated by binary diffusion where the
diffusion coefficient of the slowest diffusing element is used. The legacy of this approximation
was studied in some details in the fourth run. The rate of growth of each particle within its cell
was assumed to be controlled by long distance diffusion of Mg- and Si-atoms towards the
particle. The cells were assumed to be spherical and closed with the spherical particle in the
centre. These assumptions have been evaluated and found to be very good approximations (7).
The diffusion problem was solved by taking account of ternary diffusion (8) and the movement of
the particle/ matrix interface was also included in the calculation (7). Equilibrium was assumed 1o
be established at the interface and the interface concentration was found from a revised AIMgSi-
phase diagram (9). The magnitudes of the diffusion constants of Mg and Si in the ternary alloy
have been found in a separate investigation (10).

Results and Discussion

The results of the first run are shown in Fig. I. The transformation kinetics was simulated at
several temperatures: from 524 OC, which is only one degree below the solvus temperature of the
alloy down to 400 ©C. As can be seen, all the curves have a very similar shape. In the early
stages of the transformation, when the volume fraction formed is between 10°6-10-2 the slopes n
of the lines are all very close to 3. This is also to be expected because in this region very little
impingement of the depleted zones has occurred, and all the particles are to a very good approxi-
mation growing truly in an infinitely large crystal. With increasing volume fraction formed the n-
values of all the curves are decreasing continuously. In table 1 the n-values for the lines in Fig 1 in
the interval 1-90% and 1-99% are given. As can be seen, all the n-values are less than 34, which is
the value predicted by the Johnson-Mehl-Avrami (J.M.A.)-approximation and are systematically
becoming steeper with increasing undercooling. At temperatures close to the solvus temperature
the n-value is as low as 1.34 in the range 1-99%. At large supersaturations the approximation n =
% must be considered to be an acceptable one.
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Figure 1. Isothermal transformation curves for several temperatures. The n-values (slopes) for the
curves are shown in table I

Table I. Average n-values of the curves in Fig. 1 in the regions 1-90% and 1-99% transformed.

400°C 440°C 480°C 500°C 510°C 520°C 524°C

1-90 % 1.474 1.470 1.458 1.448 1.440 1.416 1.410

1-99 % 1.425 1.420 1.408 1.400 1.392 1.377 1.340

The results of the second run are given in Fig. 2. The results at only one temperature (500 °C) are
presented. As can be seen, a non-random distribution of the particles has a rather dramatic effect
on the transformation kinetics. When the Vorronoi cell volumes have a log normal distribution,
which implies that the particle size distribution is also log normal when the transformation is
complete, the n-value in the interval 1-99% is as low as 1.2. The J.M.A.-approximation of 34 can
in this case not be considered an acceptable one.

On the other hand, when the particles are completely uniformly distributed in the lattice, which
means that all the particles are of equal size, a n-value of 3 is a very good approximation. The n-
value in this case is even closer to % than the value obtained in the first run.
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Figure 2. Transformation kinetics with the size distributions of the cells according to eqs. (7) and

(8) and when all cells are of equal size.

The results of the third run are shown in Fig. 3 and compared with the site saturation case from
the first run under the condition that an equal number of particles was formed during the trans-
formation in both cases. In this case the J.M.A -approximation yields n = 7; while the simulated
values in the interval 1-90% and 1-99% are 1.94 and 1.88 respectively. This demonstrates that
the J.M.A.-approximation is not acceptable in this case.
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Figure 3. Site saturation nucleation kinetics compared with constant nucleation rate and transient
nucleation conditions. In the two first cases the total number of nuclei was the same.
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When a transient nucleation rate is simulated, with #,=0.1-1, o, very large n-values (n~6) are ob-
tained. In this case, which is probably the most realistic one, an approximate value of n can not be
given.

In Figs. 4a and b the results from a simulation with simultaneously diffusion of Mg and Si (ternary
diffusion) are compared with different approximations using binary diffusion. In the case of a
quasibinary composition of the alloy (Fig. 4a) an approximation using the mean value of the Mg
and Si is very accurate. As can be seen, the use of the slowest diffusing element is a poor ap-
proximation. In Fig. 4b a case with excess silicon content (0.80 wt% Mg, 0.80 wt% Si) is simu-
lated. In this case the use of a mean value of the diffusion coefficients is not as good as for a
quasibinary alloy composition. However, the use of the slowest diffusing element (Si) is the poor-
est approximation, and also inferior to the use of the fastest diffusing element (Mg). In case of
excess magnesium concentration the use of a mean diffusion coefficient is still the best, but in this
case the use of the diffusion coefficient of Si gives a better approximation than the use of the
diffusion coefficient of Mg. In general: For quasibinary alloys the use of a mean diffusion coeffi-
cient is the best and almost an exact approximation. As the concentration deviates from a quasibi-
nary composition, the use of an average diffusion coefficient is still the best approximation, as
long as the deviation from a quasibinary composition is not too large. As the deviation from a
quasibinary composition increases, the use of the diffusion coefficient of the element opposite of
the one in excess gives the best approximation to a ternary treatment of the diffusion problem.

1 RORI=OCF-OCCROTGDS
09 ¢
- } Quasibinary composition
07 ¢ | —=— Termary diffusion
06 | DMg = 2°Ds|
x 05 + —0— Binary diffusion
: D = 0.5*(Dsi+DMg)
0.4 §

» Binary diffusion
D =Dsi
03 :

——<—— Binary diffusion
02} el /
0.1 + -I:r:,,,./
0« Nz S ; 4
0.5 1 1.5 2 25 3 3.5
Log(time) [sec.]

Figure 4a. Ternary diffusion compared with different approximations using binary diffusion for a
quasibinary alloy.

T

T T

596



1
09 1
08 1 Excess silicon concentration
07 1 ——8—— Temary diffusion
0.6 + DMg =2°Dsl
—0— ginary ditfusio
x 05 1 Drlcgs'go:agrosl)
0.4 + . Binary diffusion
D=Ds
0.3 t
—<C— Binary ditfusion
02 + D = DMg
01 + <
0 .CDI:Q!-Q!I.M?;_. _’Eo:—':’”—d -’,r’— . '
05 1 1.5 2 25 3

Log(time) [sec.]

Figure 4b. Ternary diffusion compared with different approximations using binary diffusion for
an alloy with excess silicon content.
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