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Abstract

A new flexible CNC bending machine, which was named the MOS bending machine,
has been invented by the authors.  When square tubes arc passed into the guide cylin-
der and the bending dic, they are bent by shifting the relative position of the bending dic.
The bending radii arc controlled by the relative distance between the die and the square
tube. The bending angle is controlled by the penctrating square tube length.  This
CNC bending machine which can bend square tubes using the MOS bending method
has been built. The effeets of the penctration force, the bending force, bending moment
and the bending radius arc presented on such bending conditions as changing the rela-
tive distance between the dic and the square tube.  The analytical valucs are compared
with and shown to agree with the experimental oncs.

Keywords: metal forming, tube forming, MOS bending, bending moment, bending radius.

1 Introduction
Tubes arc used to reduce the weight of industrial parts, because tubes have height rigidity as
compared with weight.  Many tubes are bent, when they are employed as industrial parts, therefore
there are many bending methods such as draw bending, press bending, stretch bending and others.
The conventional bending methods are not suited for short production runs in various of sizes and
shapes.
These methods need many bending dics which arc re-
quircd for the varicty of bending radii and tube di-
amcters.  Therefore, the square tube is bent by using
the MOS bending method, from which it is possible
for many varicd bending radii to be obtained, and we
tricd to make this bending method clear.

2 CNC Bending
2.1 Bending Mechanism

Fig.1 Drincipal parts
The principal parts of the bending mechanism are of the bending machine.



438

shown in Fig.1. The relative distance between the
center line of guide cylinder @ and the center line
of bending dic @ is called offsct u. A square
tube @ is passed into the dic from guide cylinder
by the pencetrating force Py, then the square tube is
bent at bending radius R as shown in Fig.l. On
this machine, the approach V is a constant valuc.
The bending foree Py, depends on the magnitude of
offset w. When the square tube is bent, the bend-

ing moment M(= P, * u+ Py * V) operates on it.

2.2 Process of MOS bending

The MOS bending machine is shown in Fig.2.
This bending machine can bend the tubc by
controlling the position of the dic using a micro
computer and AC servo motors.  The bending
is carricd out as follows. When the square tube
@ s inserted into the guide cylinder @, the
motor for forming of tube® for control of 7,
axis is activated to enter it into the bending dic
@. Whenan approach switch@ scnscs the top
of the squarc tube, and the bending dic is moved
continuously by the AC servo motors for X and
Y axes, the bending is begun. The bending dic is
moved in only the Y axis in this study.

2.3 Analysis of MOS Bending
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Dsquare tube,

@Bending die,

®Guide cylinder,

@AC scrve for control of X axis,

®AC scrve for control of Y axis,

@Rumry cncoder for measurement of forward
tube length, DApproach switch,

®Motor for forming of tube,

®Chain for forwarding of tube,

@Plate for forwarding of tubc,

(DSpherical bearing,

@rig for control of dic inclination,

®Load celi for penctration load,

@Load celi for bending load

Fig.2 MOS bending machine.

At first, the assumption about analysis of MOS bending method is shown as follows.  The

bending foree of the this anal
not flattened after bending
between the stress

Elastic region :

O=E¢&

Elastic plastic : g

ysis is only the vertical force to the central axis.

and the cross scction is vertical to the neutral surface.

The square tube is

The relationship

and strain of the square tube is represented by the following cquations.

O]
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O :Stress
7 .:0.2%Yield stress
E: Young’s modulus

439

& :Strain n and F :Material valuc

Dimensions of the squarc tubc H and the
bending radius R arc shown in Fig.3. It is as-
sumed that the ncutral axis is moved from a
neutral surface to the outside Y, The strain
distribution is shown in Fig.3(b) and the stress
distribution corresponding with strain distribu-
tion is shown in Fig.3(c). Thc moment dM
and penctrating force dP; which exist at minute
part y distance from the center of tube are given
as follows in cquation (3) and (4).

FdM =J oydd 3)

fdP=§ odA 4
Since the neutral surface is moved Y to the
outside, strain € which exists at the part is
represented by equation (5) as follows.

PR S
R+3+y,

(5)

The geometric bending radius is represented
by cquation (6) as follows.

Vieu®-Hu
2u

©)

The cquilibrium of forces which is added to
the square tube is shown in Fig.1. The equilib-
rium cquation of the penctrating force and the
bending force is given as follows in cquations
(7) and (8).

P =Ptmatp) (D)

Center line:

Bending inside
@ ®) «©

Cross section Strain

of square tube distribution

Fig.3 Stress and strain distributions of cross section.

Fig4 Bending radii at loading and unloading.
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p=tan” u 8)

a : inclining angle of the bending dic
4 : coefficient of friction
The My, and My, are given as following cquations (9) and (10).  Equation (11) is approved by
M, and My, and the moment M cquals the moment which is calculated from equation(3).

My =RV )

M, =Pu (10)

\' Assume the adequate

M is represented by cquation (11) from

ati G “Determine the posi
cquations (9) (10). o Vo_ai‘i .

M=M,+M, (11) —Fssums *}
. the elastic-plastic
Pi; Py, My and M, are solved by the 9 = :

previous equations.  The adequate R is as-

sumed as a first step.  The values of Y, and
£

M and P are calculated

with eq. (3) and (4).

are caleulated according to this assumption.

In addition to Y, and &, ¢ is calculated l

with €. Using the calculated ¢ and former

) X M, and M,_are determined]
9 cquations, dM and P, are calculated by from eq. (8) and (9). J
cquations (3) and (4), and M is calculated by T -

R M is determined
caus Alues .
quation (12). If these values do not corre- L by M, and M_.
spond to cach other, a new R is assumed, and Doss M correspond to " No
then M and Py are recalculated by the same R VECL(I!O)A?— I
process. ot tes ]

Determine Py, P and M.

2.4 Analysis of Springback of Bending

The assumption of springback of bending is T e
cxplained as follows; P and Q show the in- | Calculate springback. }
crease of strain on loading as in cquation (12). - )
The residual stress 0, is represented with the
stress on unloading as cquation (13).

Ae=py+Q 12)

Fig.5 Flow chart of calculation for MOS bending.
o, =0 tEAe  (13)

res

The sums of the forces and moment in the axial direction become zero as indicated in cquations
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(14) and (15). Using two cquations, the numbers P and Q arc calculated.
f o, di=0 (14)
§ oo, ydi =0 (15)

The bending radii at loading and unloading are shown in Fig.4. The bending radii on loading and
unloading arc composed of incremental nominal strain of loading (€ ,) and unloading ( € ) of the
square tube as indicated in equations (16) on the inside and (17) on the outside.

RO=R(I+4 ¢ )) (16)

(R+1,) O=R+H) O(1+ A e, (17)

The amount of springbuck and the bending radii at unloading arc able to be caleulated in equation
(18) as follows.

~(R+H)P-0Q (8

The bending radius and springback are caleulated as shown in Fig.5.

3 Result and Examination

The relationship between the caleulated and the experimental values of the penetrating force and
the bending foree is shown in Fig.6. The relationship between the caleulated and experimental
values of the moment i

shown in Fig.7. The calculated and the experimental penetrating forces
Dbecome larger us the offset u increases.  But both the bending forces become slightly smaller in
spite of increasing of the offsct u.  The experimental and calculated bending moments become
larger as the offset w incrcase.  The tendencey of these caleulated values agree with the tendency of
the experimental values.  But there arc some differences between the caleulated and experimental
values.  The bending moment is the sum of the penetrating force and the bending force and the
calculated values of the bending forces are much larger than the experimental ones.  Because the
deformation of a cross scction is not considered in this calculation.  Friction is a big problem in

hending analys

The relationship between the caleulated and the experimental radii at unloading is shown in Fig8.
The calculated radii agree with the experimental ones in the range where the offset is large. But the
calculated radii do not agree with the experimental onces in the range where the offset is small. The
reason for this is; The calculated values of springback arc smaller than cxperimental ones in the
range where offset is small.
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4.Conclusion A1050-T1 t=1.0(mm)

.' wleuls . s calculated penetrating force

Comparing the calculated and the experi 3 caloulated bending force
mental valucs, the results are indicated as fol- é e experimental penetrating force
lows: 22 o experimental bending force

s; N

The bending moment is combined with the & :
penctrating force and the bending force using
the MOS Dbending method. Both forces 0 . L
( penctrating force and the bending force ) and 0 0.5 " 1

. . . . u/ty

the bending radii arc clucidated by calculation Fig.6 Comparision of calculated
and the calculated values almost match the ex- and experimental forces.

perimental ones without the bending force.

The authors expect that this analysis will bc 100

A1050-T1 t=1.0(mm)
useful, if t ati i F
he (vjcformduon of a cross scction 80 calculated bending moment
would be considered and the friction problem N ;
£ 60 |- e experimental bending moment
between the square tube and the bending dic  z
< -
would be solved. =400
e
20 | o« " )
Table.1 Material table. o
Material 0 : *
A1050 0 05 1 1
_—
Height of squarc . u/Ho
tube 15 Fig.7 Comparision of calculated
Hg Gnm) and experimental bending moment.
Thickness
: 1.0
L mm) | 600
Ultimate tensile AT050-T1 =1 0(mm)
strength 5.7 —- calculated bending radius
7 (MPa) 400 ® experimental bending radius
Elongation E °
N 32.9 £
o
A 1(%) 200 |- .
Young's modulus .
50.0 e
15 (GPa) L L
Plastic modulus 0
175.8 0 5 10
¥ (MPa) u (mm)
Work-ha\rdning ex- Fig.8 Comparision of the calculated
ponent 0.411 and experimental bending radii.
L n |
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