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THE EFFECT OF HARDENING HEAT TREATMENT ON THE TENSILE STRENGTH
AND EARINGS OF AA 3104 ALUMINUM ALLOY SHEET
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ABSTRACT  Aluminum alloys of can-body sheet requires high tensile strength and small ears.
Tensile strength of AA3104-H19 is basically determined by the amount of final cold rolling.
Howeyer, higher tensile strength and small ears can be obtained by applying precipitation hardening
reatment to AA3104 sheet. The effects of precipitation hardening treatment on crystallographic
lextures and tensile strength are analyzed, and a new thermo-mechanical processing of AA3104
alloy sheet for can-body is proposed.
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L. INTRODUCTION

AA3104-H19 alloy sheet for can body has been studied widely and deeply for improving
forming characteristics and mechanical properties[1-13]. Tensile strength of AA3104-H19 alloy
heet js basically determined by the amount of final cold rolling. Earings developed by deep
drawing are directly related to rolling textures[2,10,14,15]. For offsetting the earings developed by
rolling textures, some recrystallization textures, such as (100)[001] Cube texture, should be
coexisted.

To produce can-body sheet with balanced amount of rolling and recrystallization textures,
multiple-stand hot-rolling mills and rapid heating and cooling facilities are required in conventional
process. Improvement of strength and earing properties without rapid heating system is difficult in
the conventional process. However, a higher tensile strength and small cars could be obtained in
AA3104 alloy by adding precipitation hardening effects. The effects of precipitation hardening
heat-treatment on crystallographic textures and tensile strength of AA 3104 alloy sheet are studied.

2. EXPERIMENTAL PROCEDURES

Two kinds of hot rolled AA3104 alloy sheet are supplied by Aluminum Korea Ltd. Co. One is
4 DC casting alloy and the other is an ingot mold-casting one(IMC). Chemical compositions of the
experimental alloys are shown in Table 1.

Table 1. Chemical compositions of the experimental alloys — (wt.%)

s Elements ¥in Mg Fe Cu Si Al
IMC alloy 0.87 1.24 0.49 0.24 0.22 bal.
DC alloy 1.05 1.25 0.40 0.21 0.20 bal.
AA3104 spec. 0.4-1.4 0.8-1.3 | max. 0.7 | max. 025 | 0.12-0.3 bal.

Various cold rolling and heat-treating processes, as shown in Fig. 1, are applied to hot-rolled
sheet for obtaining the solution treatment effects. In process A, the hot rolled sheet is recrystallized
at high temperatures of 520°C and 560°C for 1 hour after the primary cold rolling in 85% reduction
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and aged at 140°C for 6 hours. In process B, homogenization at 607 C and aging at 475,,rn for

hours is applied before primary cold rolling for controlling dispersoids. The next steps ¢ {hermw
mechanical treatment in process B are the same as those of process A. Each pass of colq rolling
before recrystallization treatment is controlled below 10% reduction for developing deeD surﬁlc';'
textured region. The final thickness of the cold rolled sheet is 0.5mm.

Macroscopic textures are measured
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3. RESULTS AND DISCUSSION
3.1. Microstructures
The grains of DC alloy in process A are finer than that in process B when the g1joys are
recrystallized at 560C for 1 hour. Fig. 2 ;‘hmw.n
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Fig. 2. Size distribution of dispersoids in DC alloy
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3.2. Strength

Variation in tensile properties with reduction ratios of final cold rolling are shown in Fig. 3.
Strength anisotropy is increased with increasing reduction ratio of final cold rolling. Fig. 4 and 5
show the effects of recrystallization temperatures on tensile properties. The higher the
recrystallization temperature is, the higher the tensile strength is obtained. If the major component

Process B of textures is a recrystallization texture, the lowest tensile
~ s20 strength should be found in the rolling direction. On the other
= “%: hand, if the major component of textures is rolling texture or
“  goY e T = shear texture, the lowest tensile strength should be found in
° 45° to the rolling direction. The lowest tensile strength is

280

- found in 45° to the rolling direction. It results from shear

- textures developed during cold rolling. The effects of textures
9 on strength anisotropy are to be discussed in detail in the next

e section.
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Fig. 6. Particle distribution of DC alloy (process A) recrystallized
(a) 520°C  for 1 hr. (b) 560°C  for 1hr.

3.3. Texture analysis

All 65% cold-rolling specimens show strong rotated-cube component of shear texture halfway
between the surface and the center of sheet thickness(s=0.4). Weak cube and rotated-Goss texture-é
are also found in these specimens. However, in the center of sheet thickness(s=1), strong Cu, S and
Bs components of rolling texture are found. Orientation distribution function (ODF) of the
experimental alloys at ©,=0° in s=0.4 position are compared one another in Fig. 7. Cube textures
in the specimens of process A are higher than those in the specimens of process B. The latter shows
higher content of shear texture. Between DC alloys and IMC alloys, DC alloys show higher depsity
of recrystallization texture and lower density of shear texture. '

Crystal textures of DC alloys are analyzed after recrystallizing at 560°C. On the surface of
specimens, the maximum densities of rotated cube component are 5.35 and 2.49 in the specimen A
and B, respectively. In the center of specimens, the maximum density of rotated cube in specimen A
is a little higher than that of specimen B. It is caused by the difference of particle densities between
specimens of the process A and B. The specimen A has higher density of particles larger thap 1m
in diameter as shown in fig. 2. These particles could accumulate large deformation during hot and
cold rolling, and become nucleation sites of recrystallization through particle stimyjated
nucleation(PSN) mechanism([17,18].

3.4. Earings

Ears are measured by cupping test as shown in Fig. 8. All specimens show earings developed
in45° to the rolling direction, as predicted by texture analysis. It is found that the earing properties
are insensitive to the variation of recrystallization time and temperatures. It implies that long time
heating at these temperatures could be applied to this alloy without deterioration of ecaring
properties. This long period of recrystallization treatment makes it possible to obtain a high strength
and small earings without rapid heating facilities. Earings of DC alloys are smaller than that of IMC
alloys. At the same time, earings of specimen A’s are also smaller than those of specimen B'’s.
305MPa of tensile strength and 1.95% of earings are obtained in a AA3104 alloy sheet by applying
the new thermo-mechanical processing. For improving earring properties, it is important to increase
the number density of particles larger than 1/m in diameter, and increase the amount of
recrystallization texture.
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4. CONCLUSIONS

1. A new thermo-mechanical processing of AA3104 alloy sheet for can body is proposed. High

temperature recrystallization over 520°C after primary cold-rolling and 140C aging after
final cold-rolling are applied to AA3104 alloy sheet. In this new process, the long period of
recrystallization treatment makes it possible to obtain high strength and small earings without
rapid heating facilities.

2. Higher tensile strength and yield strength without changing earring properties are obtained by

increasing recrystallization temperature. It results from the enlarged effect of solution
treatment and precipitation hardening.

3. For improving earring properties, it is important to increase the amount of particles larger

than 1ym in diameter, and cube texture. Large particles could serve as nucleation sites of
recrystallization through particle stimulated nucleation(PSN) mechanism.

4. 305MPa of tensile strength and 1.95% of earings are obtained in a AA3104 alloy sheet by

applying the new thermo-mechanical processing.
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