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Abstract

This work is intended to demonstrate the application of neural networks in material
science. A specific example is the problem of the structure factor. The network is used
in order to predict the partial distribution function form given intensity measurements.
Afterwards it is possible to make statements about the interatomic distances and the

coordination numbers.

Introduction

norecent years neural networks developed very fast. In computer science the theoretical back-

ound was investigated. Various applications were found in many fields: in engineering or

dustrial production as well as in science. The ability to adapt from a known problem to a
rilar one distinguish a neural network to other algorithms. In the first part an introduction

the theory of the application is given. In the second part the used network is discussed.

The atomic structure

« question of the formability of metallic glasses has been discussed in many papers recently.
cre is a variety of influencing parameters on the creation process (e.g. combination of
ments, concentration, procedure of production etc.) so that metallic glasses as a result are
sre or less determined by chance. In the past there were a lot of works to make up criteria
‘he metallic glass forming that have to be met. But the experimentally produced glasses
Il showed deviations to these criteria [1]. Every approach however leads to the description
the atomic level. Every atomic model is intended to connect experimentally obtained data
irnctural properties. In order to check the evidence of the models one has to compare
perimental and theoretical results. The experimental techniques often used to investigate
“ local arrangements of the atoms are X-ray and neutron scattering. The concept of the
ciure functions is a widely used method to describe information of the arrangement and
‘ances of the atoms. However, experimental data are limited, so it is important to retrieve

wch information as possible from single measurements.
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Measuring the coherently scattered intensity I,,,(Q) one can deduct to the total structure f
S*4(Q) after [2]:
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S™(Q) = e

using ¢; as the concentration of component 7, b; as the scattering length of component

(b) = c1by + eaby (4 follows respectively of course). For the parameter Q that describes
momentum transfer the following relation is held
sin ©
A
The total structure factor S*%(Q)) can be expressed as the sum of three weighted partial st

Q =4m

factors as follows:
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The factors W;;, W;; and Wj; contain the concentrations and scattering lengths because
above definitions.
Carrying out the Fourier transformation of S"%(Q) leads to:
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The partial distribution functions g;(R), 0;;(R) and g;;(R) contain the interatomic dist:
as well as the coordination numbers. Often the partial reduced pair distribution funci:
plotted. The following equation join it with the partial distribution function:

Gij = 4m RQI'(R) — 0o
(5]

with gy being the mean atomic number density.
For completeness it should be mentioned that there are other representations accordin
Bhatia and Thornton [3].
Normally one need three linearly independent measurements of S*(Q) respectively 0"
order to determine S;(Q), Si;(@) and Sj;(Q) respectively o;(R), 0i;(R) and o, (1)
method that gives hint to the 3 solutions with only one measurement of S™%(Q)) respecit
0"*(R) would be an advantage. It is not possible to trick mathematics so the word hint =
be stressed. Of course the solving of an equation system with less equations than varia
impossible. But the physical theory behind the above equations define the solution too.
There are two possibilities for the training patterns of the net. For the first pattern we -
from 3 given function g;(R), 0;;(R) and p;;(R). We can conclude to o"*(R) and furthe
to I.,(Q). The second way starts with using known pairs of I, (Q) and the three 1@
distribution functions. These patterns (I.,(Q) as the input and g;(R), 0;;(R) and 0,1
the output/training-pattern) are used in order to train the net.
In the application measured intensity curves are used as the input. The output pattern

propagated by the network. Several examples will be demonstrated in the lecture.
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3  Backpropagation algorithm

I'here exist a huge variety of neural networks and learning algorithms. The first question is
‘hich model is the right choice? Since we need a network that recognise patterns, conclude
", a result and is able to develop a good choice is the backpropagation algorithm. In order to
implify the structure of the network we consider a feed-forward network (without feedbacks).
This is a good assumption, since the input is restricted to the first layer. Furthermore the
number of weights is reduced to the minimum possible.
| variables are used as in [4]. The brain consist of about 10! nervous cells. These cells
serate as little switch elements. They are connected via dentrids and axons in which dentrids
ad to a cell and an axon leads away. The so called synapses work as a connecting component
tween the axons and the dentrids. The transmission is carried out using small electrical
srents. Taken these facts into account we can model an artificial connection as drawn in Fig.

The calculation consist of the following steps, from the input a; to the last output a;. The
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Figure 1: The adaption of a neuron from a nerv cell

ve cells or in the artificial way the neurons contain the activation a;. Every activation a; is
ansferred to a weight w;j. The first index represents the origin and the last index the target.
Il modified activations are summed up and used as the input net;. The equation i defined as

net; = Z a;W;j (6)

1 net -values are transferred into the neuron-activation a; using a so called activation function
as follows
aj = [uelnety) (7)
hat kind of activation function is possible? Since the backpropagation algorithm needs the
¢ derivation of f... it should be a steady function. In order to simulate saturation a good
e is the sigmoidal Boltzmann function. A general definition is

4 min [ max
fi\tl(:l:) = ’_J—;JE‘ + ymux (8)
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The following variables were used: W as the width, zo as the turning point and y,,;, respect

Ymax &S the boundaries of the function. Taking these facts into account we are able to prop:.
a neural network completely.

In order to train the network onto a specific pattern t; at the output layer we have to cons
the learning algorithm. The weights as the only changeable parameters are modified as 0!l -

Awgj = na;d;
with the following definition for 4;:
fol(net;)(t; —a;) if j is located in the output layer
G [l (net;) S (0kwjg) if j is located in the hidden layer
k

The d; for a hidden layer uses the d; of the succeeding layer. n acts as a learning rate. A <«
of the structure of the whole network is given in Fig. 2.
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Figure 2: The structure of a multilayer network
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